![]() HYALURONIC ACID COMPOSITIONS COMPRISING MEPIVACAINE
专利摘要:
The invention therefore relates to a sterilized aqueous composition comprising at least one hyaluronic acid and at least mepivacaine and optionally one or more additional compounds, the mass ratio between the concentration of hyaluronic acid [HA] and the concentration of mepivacaine. [MEPI]: [HA] / [MEPI] being greater than or equal to 0.1; [HA] / [MEPI] ≥ 0.1 and further comprising at least one antioxidant selected from polyols. The invention also relates to the use of mepivacaine in substitution of lidocaine in equivalent amount to obtain a hyaluronic acid composition comprising at least one local anesthetic and further comprising at least one antioxidant chosen from polyols whose The rheological properties after heat sterilization are superior to the rheological properties of the same hyaluronic acid composition comprising lidocaine. 公开号:FR3044228A1 申请号:FR1661827 申请日:2016-12-01 公开日:2017-06-02 发明作者:Betemps Jeremie Bon;Guy Vitally 申请人:Lab Vivacy;Laboratoires Vivacy SAS; IPC主号:
专利说明:
Tableau 1 [000213] A concentration équivalentes, les propriétés rhéologiques lors de la stérilisation à la chaleur de compositions comprenant de l'acide hyaluronique de masse moléculaire moyenne en poids de 3.106 Da à une concentration de 20 mg/g avec un taux de réticulation X=0,12 sont moins altérées en présence de mépivacaïne que de lidocaïne ou de prilocaïne et ce quel que soit le ratio. Exemple 1-b : [000214] L'exemple 1-b illustre l'influence de différents anesthésiques locaux sur l'altération lors de la stérilisation à la chaleur des propriétés rhéologiques d'un gel d'acide hyaluronique de masse moléculaire moyenne en poids de 1.106 Da à une concentration de 20 mg/g avec un taux de réticulation de X= 0,07. [000215] Le ratio [HA]/[MEPI] ou [HA]/[AL] varie de 6,67 à 3,33. [000216] Pour toutes les mesures, une composition de référence est formulée, en remplaçant la solution aqueuse d'anesthésique local par une quantité équivalente de solution aqueuse de tampon phosphate (les composés additionnels étant conservés). [000217] Le tableau 2 ci-dessous recense les différentes compositions testées et les résultats obtenus. Les abréviations utilisées sont les suivantes : AL : Anesthésique local ; Aox : antioxydant ; CA : Composé additionnel ; LIDO : lidocaïne ; MEPI : mépivacaïne ; PRILO : prilocaïne ; HA : acide hyaluronique ; % G' : % d'amélioration de la composante élastique G' par rapport à la composition de référence. [000218] Le pourcentage d'amélioration de la composante élastique G' est défini comme étant : % d'amélioration G'= 100 * (Y-Y')/Y avec Y = Pourcentage de perte à la stérilisation de la composante élastique G' de la composition de référence et Y' = Pourcentage de perte à la stérilisation de la composante élastique G' de la composition testée. Tableau 2 [000219] Comme à l'exemple 1-a, mais en présence d'acide hyaluronique de plus faible masse moléculaire moyenne en poids et à un taux de réticulation plus faible, les résultats obtenus sont confirmés quel que soit le ratio. [000220] Comme les meilleurs résultats ont été obtenus en présence de lidocaïne ou de mépivacaïne, l'étude sera poursuivie en comparant les résultats obtenus uniquement en présence de mépivacaïne ou de lidocaïne. Exemple 1-c : [000221] L'exemple 1-c illustre l'influence de différents anesthésiques sur l'altération lors de la stérilisation à la chaleur des propriétés rhéologiques d'un gel d'acide hyaluronique de masse moléculaire moyenne en poids de 3.106 Da à une concentration de 20 mg/g avec un taux de réticulation X=0,06. [000222] Le ratio [HA]/[MEPI] ou [HA]/[AL] est de 6,67. [000223] Pour toutes les mesures, une composition de référence est formulée, en remplaçant la solution aqueuse d'anesthésique local par une quantité équivalente de solution aqueuse de tampon phosphate (les composés additionnels étant conservés). [000224] Le tableau 3 ci-dessous recense les différentes compositions testées et les résultats obtenus. Les abréviations utilisées sont les suivantes : AL : Anesthésique local ; Aox : antioxydant ; CA : Composé additionnel ; LIDO : lidocaïne ; MEPI : mépivacaïne ; HA : acide hyaluronique% ; G' : % d'amélioration de la composante élastique G' par rapport à la composition de référence. [000225] Le pourcentage d'amélioration de la composante élastique G' est défini comme étant : % d'amélioration G'= 100 * (Y-Y')/Y avec Y = Pourcentage de perte à la stérilisation de la composante élastique G' de la composition de référence et Y' = Pourcentage de perte à la stérilisation de la composante élastique G' de la composition testée. Tableau 3 [000226] Les résultats obtenus à l'exemple 1-a sont confirmés avec de l'acide hyaluronique de même masse moléculaire moyenne en poids, à la même concentration mais avec un taux de réticulation inférieur. Les résultats obtenus à l'exemple 1-b sont également confirmés avec de l'acide hyaluronique de poids moléculaire moyen supérieur, à la même concentration et à un taux de réticulation comparable. Exemple 1-d : [000227] L'exemple 1-d illustre l'influence de différents anesthésiques locaux sur l'altération lors de la stérilisation à la chaleur des propriétés rhéologiques d'un gel d'acide hyaluronique de masse moléculaire moyenne en poids de 3.1Û6 Da à une concentration de 20 mg/g, non réticulé. [000228] Le ratio [HA]/[MEPI] ou [HA]/[AL] varie de 20 à 2. [000229] Pour toutes les mesures, une composition de référence est formulée, en remplaçant la solution aqueuse d'anesthésique local par une quantité équivalente de solution aqueuse de tampon phosphate (les composés additionnels étant conservés). [000230] Le tableau 4 ci-dessous recense les différentes compositions testées et les résultats obtenus. Les abréviations utilisées sont les suivantes : AL : Anesthésique local ; Aox : antioxydant ; CA : Composé additionnel ; LIDO : lidocaïne ; MEPI : méplvacaïne ; HA : acide hyaluronique ; % η : % d'amélioration de la viscosité η par rapport à la composition de référence. [000231] Le pourcentage d'amélioration de la viscosité η est défini comme étant ; % d'amélioration η = 100 * (Z-Z')/Z avec Z = Pourcentage de perte à la stérilisation de la viscosité η de la composition de référence et Z' = Pourcentage de perte à la stérilisation de la viscosité η de la composition testée. Tableau 4 [000232] Les résultats obtenus aux exemples 1-a et 1-c sont confirmés avec de l'acide hyaluronique de même masse moléculaire moyenne en poids à la même concentration mais non réticulé quel que soit le ratio. [000233] Les propriétés rhéologiques lors de la stérilisation à la chaleur de compositions comprenant de l'acide hyaluronique à une concentration de 20 mg/g sont moins altérées en présence de mépivacaïne que de lidocaïne ou de prilocaïne, à concentration équivalentes, et ce quels que soient le ratio, la masse moléculaire moyenne en poids et le taux de réticulation. Exemple 2 : [000234] L'exemple 2 illustre l'influence de différents anesthésiques locaux en présence d'un antioxydant sur l'altération lors de la stérilisation à la chaleur des propriétés rhéologiques de gels d'acide hyaluronique de différentes masses moléculaires, à différentes concentrations non réticulé ou réticulé et à différents taux de réticulation. Exemple 2-a : [000235] L'exemple 2-a illustre l'influence de différents anesthésiques locaux en présence de mannitol sur l'altération lors de la stérilisation à la chaleur des propriétés rhéologiques d'un gel d'acide hyaluronique de masse moléculaire moyenne en poids de 3.106 Da avec un taux de réticulation X =0,12 à une concentration de 20 mg/g. [000236] Le ratio [HA]/[MEPI] ou [HA]/[AL] varie de 20 à 2. [000237] Pour toutes les mesures, une composition de référence est formulée, en remplaçant la solution aqueuse d'anesthésique local par une quantité équivalente de solution aqueuse de tampon phosphate (les composés additionnels étant conservés). [000238] Le tableau 5 ci-dessous recense les différentes compositions testées et les résultats obtenus. Les abréviations utilisées sont les suivantes : AL : Anesthésique local ; Aox : antioxydant ; MAN : mannitol ; CA : Composé additionnel ; LIDO : lidocaïne ; MEPI : mépivacaïne ; PRILO : prilocaïne ; HA : acide hyaluronique % G' : % d'amélioration de la composante élastique G' par rapport à la composition de référence. [000239] Le pourcentage d'amélioration de la composante élastique G' est défini comme étant : % d'amélioration G'= 100 * (Y-Y’)/Y avec Y = Pourcentage de perte à la stérilisation de la composante élastique G' de la composition de référence et Y' = Pourcentage de perte à la stérilisation de la composante élastique G' de la composition testée. Tableau 5 [000240] A concentrations équivalentes en présence de mannitol, les propriétés rhéologiques lors de la stérilisation à la chaleur de compositions comprenant de l'acide hyaluronique de masse moléculaire moyenne en poids de 3.106 Da à une concentration de 20 mg/g et avec un taux de réticulation X=0,12 sont moins altérées en présence de mépivacaïne que de lidocaïne ou de prilocaïne et ce quel que soit le ratio. Exemple 2-b : [000241] L'exemple 2-b illustre l'influence de différents anesthésiques locaux en présence d'un antioxydant sur l'altération lors de la stérilisation à la chaleur des propriétés rhéologiques d'un gel d'acide hyaluronique de masse moléculaire moyenne en poids de 1.106 Da à une concentration de 20 mg/g, avec un taux de réticulation de X= 0,07 . [000242] Le ratio [HA]/[MEPI] ou [HA]/[AL] varie de 6,67 à 3,33. [000243] Pour toutes les mesures, une composition de référence est formulée, en remplaçant la solution aqueuse d'anesthésique local par une quantité équivalente de solution aqueuse de tampon phosphate (les composés additionnels étant conservés). [000244] Le tableau 6 ci-dessous recense les différentes compositions testées et les résultats obtenus. Les abréviations utilisées sont les suivantes : AL : Anesthésique local ; Aox : antioxydant ; MAN : mannitol ; CA : Composé additionnel ; LIDO : lidocaïne ; MEPI : mépivacaïne ; PRILO : prilocaïne ; HA : acide hyaluronique ; % G' : % d'amélioration de la composante élastique G' par rapport à la composition de référence. [000245] Le pourcentage d'amélioration de la composante élastique G' est défini comme étant : % d'amélioration G'= 100 * (Y-Y')/Y avec Y = Pourcentage de perte à la stérilisation de la composante élastique G' de la composition de référence et Y' = Pourcentage de perte à la stérilisation de la composante élastique G' de la composition testée. Tableau 6 [000246] Comme à l'exemple 2-a, mais en présence d'acide hyaluronique de plus faible masse moléculaire moyenne en poids et à un taux de réticulation plus faible, les résultats obtenus sont confirmés quel que soit le ratio. [000247] Les meilleurs résultats ayant été obtenus en présence de lidocaïne ou de mépivacaïne, la suite de l'étude a été faite uniquement en comparant les résultats obtenus en présence de mépivacaïne ou de lidocaïne. Exemple 2-c : [000248] L'exemple 2-c illustre l'influence de différents anesthésiques locaux en présence d'un antioxydant sur l'altération lors de la stérilisation à la chaleur des propriétés rhéologiques d'un gel d'acide hyaluronique de masse moléculaire moyenne en poids de 3.106 Da à une concentration de 20 mg/g avec un taux de réticulation X=0,06. [000249] Le ratio [HA]/[MEPI] ou [HA]/[AL] est de 3,33. [000250] Pour toutes les mesures, une composition de référence est formulée, en remplaçant la solution aqueuse d'anesthésique local par une quantité équivalente de solution aqueuse de tampon phosphate (les composés additionnels étant conservés). [000251] Le tableau 7 ci-dessous recense les différentes compositions testées et les résultats obtenus. Les abréviations utilisées sont les suivantes : AL : Anesthésique local ; Aox : antioxydant ; MAN : mannitol ; CA : Composé additionnel ; LIDO : lidocaïne ; MEPI : mépivacaïne ; HA : acide hyaluronique ; % G' : % d'amélioration de la composante élastique G' par rapport à la composition de référence. [000252] Le pourcentage d'amélioration de la composante élastique G' est défini comme étant : % d'amélioration G'= 100 * (Y-Y')/Y avec Y = Pourcentage de perte à la stérilisation de la composante élastique G' de la composition de référence et Y' = Pourcentage de perte à la stérilisation de la composante élastique G' de la composition testée. Tableau 7 [000253] Les résultats obtenus à l'exemple 2-a sont confirmés avec de l'acide hyaluronique de même masse moléculaire moyenne en poids, à la même concentration mais avec un taux de réticulation inférieur. Les résultats obtenus à l'exemple 2-b sont également confirmés avec de l'acide hyaluronique de masse moléculaire moyenne en poids supérieure, à la même concentration avec un taux de réticulation voisin. Exemple 2-d : [000254] L'exemple 2-d illustre l'influence de différents anesthésiques locaux en présence de mannitol sur l'altération lors de la stérilisation à la chaleur des propriétés rhéologiques d'un gel d'acide hyaluronique de masse moléculaire moyenne en poids de 3.106 Da à une concentration de 20 mg/g, non réticulé. [000255] Le ratio [HA]/[MEPI] ou [HA]/[AL] varie de 20 à 2. [000256] Pour toutes les mesures, une composition de référence est formulée, en remplaçant la solution aqueuse d'anesthésique local par une quantité équivalente de solution aqueuse de tampon phosphate. [000257] Le tableau 8 ci-dessous recense les différentes compositions testées et les résultats obtenus. Les abréviations utilisées sont les suivantes : AL : Anesthésique local ; Aox : antioxydant ; MAN : mannitol ; CA : Composé additionnel ; MEPI : mépivacaïne, HA, acide hyaluronique; % η : % d'amélioration de la viscosité η par rapport à la composition de référence. [000258] Le pourcentage d'amélioration de la viscosité η est défini comme étant ; % d'amélioration η = 100 * (Z-Z')/Z avec Y = Pourcentage de perte à la stérilisation de la viscosité η de la composition de référence et Y' - Pourcentage de perte à la stérilisation de la viscosité η de la composition testée. Tableau 8 [000259] Les résultats obtenus aux exemples 2-a et 2-c sont confirmés avec de l'acide hyaluronique de même masse moléculaire moyenne en poids, à la même concentration mais non réticulé quel que soit le ratio. [000260] A concentration équivalentes, les propriétés rhéologiques lors de la stérilisation à la chaleur de compositions comprenant de l'acide hyaluronique à une concentration de 20 mg/g comprenant du mannitol sont moins altérées en présence de mépivacaïne que de lidocaïne ou de prilocaïne et ce quels que soient le ratio, la masse moléculaire moyenne en poids et le taux de réticulation. Exemple 3 : [000261] L'exemple 3 Illustre l'influence de différents anesthésiques locaux en présence d'un sel d'ascorbyl phosphate de magnésium, ci-après MAP sur l'altération lors de la stérilisation à la chaleur des propriétés rhéologiques de gels d'acide hyaluronique à différents taux de réticulation. Exemple 3-a [000262] L'exemple 3-a illustre l'influence de différents anesthésiques locaux en présence de MAP sur l'altération lors de la stérilisation à la chaleur des propriétés rhéologiques d'un gel d'acide hyaluronique de masse moléculaire moyenne en poids de 3.106 Da avec un taux de réticulation X=0,12 à une concentration de 20 mg/g. [000263] Le ratio [HA]/[MEPI] ou [HA]/[AL] est de 6,67. [000264] Pour toutes les mesures, une composition de référence est formulée, en remplaçant la solution aqueuse d'anesthésique local par une quantité équivalente de solution aqueuse de tampon phosphate (les composés additionnels étant conservés). [000265] Le tableau 9 ci-dessous recense les différentes compositions testées et les résultats obtenus. Les abréviations utilisées sont les suivantes : AL : Anesthésique local ; Aox : antioxydant ; CA : Composé additionnel ; MAP : ascorbyl phosphate de magnésium ; LIDO : lidocaïne ; MEPI : mépivacaïne ; HA : acide hyaluronique ; % G' : % d'amélioration de la composante élastique G' par rapport à la composition de référence. [000266] Le pourcentage d'amélioration de la composante élastique G' est défini comme étant : % d'amélioration G'= 100 * (Y-Y')/Y avec Y = Pourcentage de perte à la stérilisation de la composante élastique G' de la composition de référence et Y' = Pourcentage de perte à la stérilisation de la composante élastique G' de la composition testée. Tableau 9 [000267] En présence MAP, les propriétés rhéologiques lors de la stérilisation à la chaleur de compositions comprenant de l'acide hyaluronique de masse moléculaire moyenne en poids de 3.106 Da avec un taux de réticulation X=0,06 et à une concentration de 20 mg/g sont moins altérées en présence de méplvacaïne que de lidocaïne, à concentrations équivalente, à un ratio [HA]/[MEPI] de 6,67. Exemple 3-b [000268] L'exemple 3-b illustre l'Influence de différents anesthésiques locaux en présence de MAP sur l'altération lors de la stérilisation à la chaleur des propriétés rhéologiques d'un gel d'acide hyaluronique de masse moléculaire moyenne en poids de 3.105 Da avec un taux de réticulation X=0,06 à une concentration de 20 mg/g. [000269] Le ratio [HA]/[MEPI] ou [HA]/[AL] est de 6,67. [000270] Pour toutes les mesures, une composition de référence est formulée, en remplaçant la solution aqueuse d'anesthésique local par une quantité équivalente de solution aqueuse de tampon phosphate (les composés additionnels étant conservés). [000271] Le tableau 10 ci-dessous recense les différentes compositions testées et les résultats obtenus. Les abréviations utilisées sont les suivantes : AL : Anesthésique local ; Aox : antioxydant ; CA : Composé additionnel ; MAP : ascorbyl phosphate de magnésium ; LIDO : lidocaïne ; MEPI : mépivacaïne ; HA : acide hyaluronique ; % G' : % d'amélioration de la composante élastique G' par rapport à la composition de référence. [000272] Le pourcentage d'amélioration de la composante élastique G' est défini comme étant : % d'amélioration G'= 100 * (Y-Y')/Y avec Y = Pourcentage de perte à la stérilisation de la composante élastique G' de la composition de référence et Y' = Pourcentage de perte à la stérilisation de la composante élastique G' de la composition testée. Tableau 10 [000273] Les résultats obtenus à l'exemple 3-a sont confirmés avec de l'acide hyaluronique de même masse moléculaire moyenne en poids, à la même concentration et au même ratio[HA]/[MEPI], mais à un taux de réticulation inférieur. [000274] Les propriétés rhéologiques lors de la stérilisation à la chaleur de compositions comprenant de l'acide hyaluronique à une concentration de 20 mg/g en présence de MAP sont moins altérées en présence de mépivacaïne que de lidocaïne à concentration équivalente, et ce quel que soit le taux de réticulation. Exemple 4 : [000275] L'exemple 4 illustre l'influence de différents anesthésiques locaux en présence de mannitol et de SOS sur l'altération lors de la stérilisation à la chaleur des propriétés rhéologiques de gels d'acide hyaluronique de masse moléculaire moyenne en poids de 3.106 Da avec un taux de réticulation X=0,12 à une concentration de 20 mg/g. [000276] Le ratio [HA]/[MEPI] ou [HA]/[AL] est de 6,67. [000277] Pour toutes les mesures, une composition de référence est formulée, en remplaçant la solution aqueuse d'anesthésique local par une quantité équivalente de solution aqueuse de tampon phosphate (les composés additionnels étant conservés). [000278] Le tableau 11 ci-dessous recense les différentes compositions testées et les résultats obtenus. Les abréviations utilisées sont les suivantes : AL : Anesthésique local ; Aox : antioxydant ; MAN : mannitol ; CA : Composé additionnel ; SOS : sucrose octasulfate ; LIDO : lidocaïne ; MEPI : mépivacaïne ; HA : acide hyaluronique ; % G' : % d'amélioration de la composante élastique G' par rapport à la composition de référence. [000279] Le pourcentage d'amélioration de la composante élastique G' est défini comme étant : % d'amélioration G'= 100 * (Y-Y')/Y avec Y = Pourcentage de perte à la stérilisation de la composante élastique G' de la composition de référence, et Y' = Pourcentage de perte à la stérilisation de la composante élastique G' de la composition testée. Tableau 11 [000280] A concentration équivalentes, en présence de mannitol et de SOS les propriétés rhéologiques lors de la stérilisation à la chaleur de compositions comprenant de l'acide hyaluronique à une concentration de 20 mg/g sont moins altérées en présence de mépivacaïne que de lidocaïne à un ratio de 6,67. Exemple 5 [000281] L'exemple 5 illustre l'influence de différents anesthésiques locaux en présence de mannitol et de MAP sur l'altération lors de la stérilisation à la chaleur des propriétés rhéologiques de gels d'acide hyaluronique de masse moléculaire moyenne en poids de 3,10e Da avec un taux de réticulation X=0,12 à une concentration de 20 mg/g. Exemple 5-a [000282] L'exemple 5-a illustre l'influence de différents anesthésiques locaux en présence de mannitol et de MAP à une concentration de 0,3 mg/g, sur l'altération lors de la stérilisation à la chaleur des propriétés rhéologiques de gels d'acide hyaluronique de masse moléculaire moyenne en poids de 3,10e Da avec un taux de réticulation X=0,12 à une concentration de 20 mg/g. [000283] Pour toutes les mesures, une composition de référence est formulée, en remplaçant la solution aqueuse d'anesthésique local par une quantité équivalente de solution aqueuse de tampon phosphate (les composés additionnels étant conservés). [000284] Le tableau 12 ci-dessous recense les différentes compositions testées et les résultats obtenus. Les abréviations utilisées sont les suivantes : AL : Anesthésique local ; Aox : antioxydant ; MAN : mannitol ; CA : Composé additionnel ; MAP : ascorbyl phosphate de magnésium ; LIDO : lidocaïne ; MEPI : mépivacaïne ; HA : acide hyaluronique ; % G' : % d'amélioration de la composante élastique G' par rapport à la composition de référence. [000285] Le pourcentage d'amélioration de la composante élastique G' est défini comme étant : % d'amélioration G'= 100 * (Y-Y')/Y avec Y = Pourcentage de perte à la stérilisation de la composante élastique G' de la composition de référence, et Y' = Pourcentage de perte à la stérilisation de la composante élastique G' de la composition testée. Tableau 12 [000286] A concentration équivalentes, les propriétés rhéologiques lors de la stérilisation à la chaleur de compositions comprenant de l'acide hyaluronique à une concentration de 20 mg/g en présence de mannitol et de MAP à une concentration de 0,3 mg/g sont moins altérées en présence de mépivacaïne que de lidocaïne à un ratio de 6,67. Exemple 5-b [000287] L'exemple 5-b illustre l'influence de différents anesthésiques locaux en présence de mannitol et de MAP à une concentration de 0,7 mg/g, sur l'altération lors de la stérilisation à la chaleur des propriétés rhéologiques de gels d'acide hyaluronique de masse moléculaire moyenne en poids de 3.106 Da avec un taux de réticulation X=0,12 à une concentration de 20 mg/g. [000288] Pour toutes les mesures, une composition de référence est formulée, en remplaçant la solution aqueuse d'anesthésique local par une quantité équivalente de solution aqueuse de tampon phosphate (les composés additionnels étant conservés) [000289] Le tableau 13 ci-dessous recense les différentes compositions testées et les résultats obtenus. Les abréviations utilisées sont les suivantes : AL : Anesthésique local ; Aox : antioxydant ; MAN : mannitol ; CA : Composé additionnel ; MAP : ascorbyl phosphate de magnésium ; LIDO : lidocaïne ; MEPI : mépivacaïne ; HA : acide hyaluronique ; % G' : % d'amélioration de la composante élastique G' par rapport à la composition de référence. [000290] Le pourcentage d'amélioration de la composante élastique G' est défini comme étant : % d'amélioration G'= 100 * (Y-Y')/Y avec Y = Pourcentage de perte à la stérilisation de la composante élastique G' de la composition de référence, et Y' = Pourcentage de perte à la stérilisation de la composante élastique G' de la composition testée. Tableau 13 [000291] Les résultats obtenus à l'exemple 5-a sont confirmés avec une concentration en MAP supérieure. Exemple 6 [000292] L'exemple 6 permet de comparer la cinétique de relargage de la mépivacaïne à la cinétique de relargage de la lidocaïne introduites chacune dans un gel d'acide hyaluronique de masse moléculaire moyenne en poids de 3.106 Da avec un taux de réticulation de X = 0,12 à une concentration de 20 mg/g. Les concentrations initiales en mépivacaïne ou en lidocaïne sont de 3 mg/g. [000293] Le protocole d'étude des cinétiques de relargage des deux anesthésiques locaux est le même que celui mis en œuvre à l'exemple 5 de la demande de brevet WO 2010/015901 au nom d'Allergan. La cinétique de relargage a cependant été étudiée à 37°C en milieu sérum physiologique. Un suivi par spectrophotométrie UV-Visible est réalisé pour doser l'anesthésique local présent dans le gel. [000294] Dans le tableau 13 ci-dessous les pourcentages massiques de lidocaïne ou de mépivacaïne au sein du gel d'acide hyaluronique mesurés après différents temps de dialyse sont précisés. Tableau 13 [000295] Les résultats cl-dessus obtenus sont illustrés par la Figure 1 qui est un graphique représentant les concentrations en lidocaïne et en mépivacaïne en fonction du temps de dialyse. La Figure 1 qui représente la concentration massique en anesthésique local (lidocaïne et/ou mépivacaïne) en fonction du temps de dialyse en heure, montre que la cinétique de relargage de la lidocaïne et celle de la mépivacaïne sont comparables. [000296] Ainsi, la quantité biodisponible d'anesthésique local est équivalente que l'on incorpore de la lidocaïne ou que l'on incorpore de la mépivacaïne. The invention relates to the field of biodegradable gels and hydrogels used as biomaterials and more particularly in the medical and aesthetic fields. Examples of medical applications include injections to replace defective biological fluids for example in the joints to replace the synovial fluid, the injection following surgery to prevent peritoneal adhesions, peri-urethral injections to treat the incontinence and injections following surgery for presbyopia. Among the aesthetic applications include, for example, injections for filling wrinkles, fine lines and skin defects or increasing volumes such as lips, cheekbones, etc.. In all these applications the gels and hydrogels used must have optimized properties in terms of in vivo remanence, rheology and viscosity to ensure good injectablity, these hydrogels being injected with needles which must remain the as fine as possible, to guarantee the precision of practitioners' gestures and to minimize post-injection reactions. The gels and hydrogels used are based on polymers which are chosen from polysaccharides such as hyaluronic acid, keratane, heparin, cellulose and cellulose derivatives, alginic acid, xanthan, carrageenan , chitosan, chondroitin and their biologically acceptable salts. To improve these gels and / or hydrogels and / or give them particular properties, a number of additives can be added thereto. One of the main disadvantages of adding additives is the potential degradation of the rheological and / or viscoelastic properties of the final gels or their stability, either directly during the addition or during the sterilization phases, or in time for example during storage. [0008] Michael H Gold's article (Clinical Interventions in Aging, 2007, 369-376) quickly retraces the history of the evolution of dermal fillers. The first compositions developed for this purpose were based on collagen. Zyderm® (approved by the FDA in 1981) and Zyplast® (approved by the FDA in 1985) products were based on collagen derived from cattle. Subsequently two similar products, but based on collagen of human origin have been developed (CosmoDerm® and CosmoPlast® approved by the FDA in 2003). In the late 1980s Balazs developed the first composition for dermal filler based on hyaluronic acid. Since improvements have been made to increase the stability of hyaluronic acid compositions. As stated in the Gold article cited above, the collagen-based compositions contained lidocaine to alleviate the pain associated with the injection technique. However, at first, hyaluronic acid-based compositions did not contain local anesthetic because of additive stability problems as discussed above. In recent years efforts have been made to incorporate a local anesthetic, in particular lidocaine in gels based on hyaluronic acid while ensuring a certain stability. Puragen ™ Plus marketed by Mentor Corporation is, according to Gold's article, the first hyaluronic acid-based filling composition comprising lidocaine. The patent application WO 2005/112888 in the name of Mentor Corporation published on December 1, 2005 describes a method for preparing injectable hydrogels that may comprise lidocaine. Numerous patent applications relating to compositions based on hyaluronic acid and comprising lidocaine have been filed by the players in the field. The patent application WO 2005/067994 in the name of Anika Therapeutics published July 28, 2005 describes in Example 21 compositions based on particles of crosslinked hyaluronic acid gels comprising lidocaine. The patent application WO 2010/015901 in the name of Allergan published February 11, 2010 describes injection compositions based on hyaluronic acid for dermal filling comprising lidocaine. The patent application WO 2010/052430 in the name of Anteis published May 14, 2010 describes compositions based on hyaluronic acid comprising lidocaine and one or more polyol (s). The patent application WO 2012/104419 in the name of Q-MED AB published on August 9, 2012 also describes injection compositions based on hyaluronic acid for dermal filling comprising a local anesthetic. The applicant has carried out several tests with compositions comprising tetracaine or bupivacaine, but most of the examples described in patent application WO 2012/104419 relate to compositions comprising lidocaine. Other local anesthetics are cited in the literature, but rarely exemplified and only products comprising lidocaine are marketed. [00018] A patent application EP 2 581 079 in the name of Biopolymer GmbH 8i Co. KG and which describes compositions based on hyaluronic acid and prilocaine, having a release profile of the local anesthetic faster than the compositions. comprising lidocaine described in patent application WO 2010/015901 in the name of Allergan cited above was published on April 17, 2013. Indeed, one of the improvements to be achieved is to obtain an action of local anesthetics as fast as possible. Potential candidates are fast-acting, aminoamid-type local anesthetics, of which the group consists of lidocaine, etidocaine, mepivacaine, prilocaine and articaine. The time of action of these local anesthetics depends on their pKa which are between 7.7 and 8.0. At physiological pH, the local anesthetic with the fastest time to action is the one whose pKa will be the closest to 7.4, because its basic form, non-ionized liposoluble, will be the one that will penetrate the epineum and the neuronal membrane, subsequently allowing the molecule to be more readily available to block the sodium channels. Among the possible fast-acting aminoamide candidates, mepivacaine is the local anesthetic with the lowest pKa in the group because its pKa is 7.7, so mepivacaine has, in theory, the time to action the faster group. [00022] However, one of the risks presented by the incorporation of molecules of this type is their tendency to precipitation. Indeed, the basic form is liposoluble, and when they are incorporated into the aqueous gel, generally formulated at a pH close to physiological pH, ie 7.4, the anesthetic will have a high propensity to precipitate. [00023] The lower the pKa, the greater the risk of precipitation in the gel based on hyaluronic acid, so mepivacaine is in theory the worst candidate. Indeed, it is imperative that no precipitation occurs in the gels that are injected with fine needles in order to correct wrinkles. The use in aesthetics requires that nothing can hinder the injection, under penalty of misapplication and therefore defect in the filling. In addition, a precipitate would cause the same effects as a foreign body and therefore would entail risks of inflammation.In addition, the formation of a precipitate would reduce the amount of local anesthetic solution and therefore decrease its bioavailability and therefore its efficiency. No doubt because of the aforementioned drawbacks, although listed among local anesthetics that can be incorporated into compositions based on hyaluronic acid in patent applications WO 2010/015901 and WO 2012/104419, no example of gel based on hyaluronic acid comprising mepivacaine has been described. From the literature is known an article by Cho et al, Pak. J. Pharm. Sci., 2001 Jan; 24 (1): 87-93 which describes mepivacaine release studies from hydroxypropyl methylcellulose (HPMC) gels. These compositions are formulated as a gel for direct application to the skin and transdermal administration. It is described in this article that the increase in the concentration of mepivacaine and the increase in temperature increases the release rate of mepivacaine. [00027] No mepivacaine formulation based on hyaluronic acid has so far been described, probably because of the potential difficulties in formulating it at physiological pH. Surprisingly, the Applicant has shown that the incorporation of mepivacaine hyaluronic acid-based gels allowed on the one hand to obtain compositions at pH close to physiological pH without precipitate and despite the unfavorable pKa mepivacaine and secondly that these sterilized compositions had less altered rheological properties during their sterilization compared to compositions comprising another local anesthetic of the same group. In addition, this slight alteration of the elastic component G 'during sterilization has been observed regardless of any other excipients or additional compounds conventionally used in the formulation of filling gels. The invention therefore relates to an aqueous composition sterilized at pH close to physiological pH, comprising at least one hyaluronic acid and at least mepivacaine, the mass ratio between the concentration of hyaluronic acid [HA] and the concentration of mepivacaine [ MEPI]: [HA] / [MEPI] being greater than or equal to 0.1; [HA] / [MEPI]> 0.1. By hyaluronic acid is meant hyaluronic acid, crosslinked or uncrosslinked, alone or as a mixture, optionally chemically modified by substitution, alone or as a mixture, optionally in the form of one of its salts, alone or in admixture. . Mepivacaine means mepivacaine or one of its salts, alone or in mixture. In one embodiment, the mass ratio between the concentration of hyaluronic acid [HA] and the concentration of mepivacaine [MEPI]: [HA] / [MEPI] is between 0.1 and 50, 0.1 <[HA] / [MEPI] <50. In one embodiment, the mass ratio between the concentration of hyaluronic acid [HA] and the mepivacaine concentration [MEPI]: [HA] / [MEPI] is between 0.5 and 40, 0.5 <[HA] / [MEPI] <40. In one embodiment, the mass ratio between the concentration of hyaluronic acid [HA] and the concentration of mepivacaine [MEPI]: [HA] / [MEPI] is between 1 and 30, 1 <[HA] / [MEPI] <30. In one embodiment, the mass ratio between the concentration of hyaluronic acid [HA] and the concentration of mepivacaine [MEPI]: [HA] / [MEPI] is between 2 and 20, 2 <[HA] / [MEPI] <20. In one embodiment, the mass ratio between the concentration of hyaluronic acid [HA] and the concentration of mepivacaine [MEPI], [HA] / [MEPI] is between 7/3 and 26/3, 7 / 3 <[HA] / [MEPI] <26/3. In one embodiment, the mass ratio between the concentration of hyaluronic acid [HA] and the concentration of mepivacaine [MEPI], [HA] / [MEPI] is between 2 and 20/3, 2 <[HA] / [MEPI] <20/3. In one embodiment, the mass ratio between the concentration of hyaluronic acid [HA] and the concentration of mepivacaine [MEPI], [HA] / [MEPI] is between 2 and 10/3, 2 <[HA] / [MEPI] <10/3. In one embodiment, the mass ratio between the concentration of hyaluronic acid [HA] and the concentration of mepivacaine [MEPI], [HA] / [MEPI] is 20. In one embodiment, the mass ratio between the concentration of hyaluronic acid [HA] and the concentration of mepivacaine [MEPI], [HA] / [MEPI] is 26/3. In one embodiment, the mass ratio between the concentration of hyaluronic acid [HA] and the concentration of mepivacaine [MEPI], [HA] / [MEPI] is 20/3. In one embodiment, the mass ratio between the concentration of hyaluronic acid [HA] and the concentration of mepivacaine [MEPI], [HA] / [MEPI] is 10/3. In one embodiment, the mass ratio between the concentration of hyaluronic acid [HA] and the concentration of mepivacaine [MEPI], [HA] / [MEPI] is 7/3. In one embodiment, the mass ratio between the concentration of hyaluronic acid [HA] and the concentration of mepivacaine [MEPI], [HA] / [MEPI] is 2. In one embodiment, the concentration of mepivacaine [MEPI] is between 0.01 mg / g and 50 mg / g of total weight of said composition. In one embodiment, the concentration of mepivacaine [MEPI] is between 0.05 mg / g and 45 mg / g of total weight of said composition. In one embodiment, the concentration of mepivacaine [MEPI] is between 0.1 mg / g and 40 mg / g of total weight of said composition. In one embodiment, the concentration of mepivacaine [MEPI] is between 0.2 mg / g and 30 mg / g of total weight of said composition. In one embodiment, the concentration of mepivacaine [MEPI] is between 0.5 mg / g and 20 mg / g of total weight of said composition. In one embodiment, the concentration of mepivacaine [MEPI] is between 1 mg / g and 15 mg / g of total weight of said composition. In one embodiment, the concentration of mepivacaine [MEPI] is between 1 mg / g and 10 mg / g of total weight of said composition. In one embodiment, the concentration of mepivacaine [MEPI] is between 1 mg / g and 6 mg / g of total weight of said composition. In one embodiment, the concentration of mepivacaine [MEPI] is between 1 mg / g and 5 mg / g of total weight of said composition. In one embodiment, the concentration of mepivacaine [MEPI] is between 2 mg / g and 5 mg / g of total weight of said composition. In one embodiment, the concentration of mepivacaine [MEPI] is between 6 mg / g and 10 mg / g of total weight of said composition. In one embodiment, the concentration of mepivacaine [MEPI] is 1 mg / g of total weight of said composition. In one embodiment, the concentration of mepivacaine [MEPI] is 3 mg / g of total weight of said composition. In one embodiment, the concentration of mepivacaine [MEPI] is 4 mg / g of total weight of said composition. In one embodiment, the concentration of mepivacaine [MEPI] is 5 mg / g of total weight of said composition. In one embodiment, the concentration of mepivacaine [MEPI] is 6 mg / g of total weight of said composition. In one embodiment, the concentration of mepivacaine [MEPI] is 10 mg / g of total weight of said composition. In one embodiment, the mepivacaine is selected from the group comprising mepivacaine or a pharmaceutically acceptable salt thereof. In one embodiment, the mepivacaine is selected from the group consisting of racemic mepivacaine hydrochloride, racemic mepivacaine, (R) -mepivacaine hydrochloride, (S) -mepivacaine hydrochloride, (R) mepivacaine and (S) mepivacaine or a pharmaceutically acceptable salt thereof. In one embodiment, mepivacaine is racemic mepivacaine hydrochloride. In one embodiment, the mepivacaine is (R) -mepivacaine hydrochloride. In one embodiment, the mepivacaine is (S) -mepivacaine hydrochloride. [00068] In one embodiment, mepivacaine is racemic mepivacaine. In one embodiment, mepivacaine is (R) -mepivacaine. In one embodiment, the mepivacaine is (S) -mepivacaine. In one embodiment, the concentration of hyaluronic acid [HA] is between 2 mg / g and 50 mg / g of total weight of said composition. In one embodiment, the concentration of hyaluronic acid [HA] is between 4 mg / g and 40 mg / g of total weight of said composition. In one embodiment, the concentration of hyaluronic acid [HA] is between 5 mg / g and 30 mg / g of total weight of said composition. In one embodiment, the concentration of hyaluronic acid [HA] is between 10 mg / g and 30 mg / g of total weight of said composition. In one embodiment, the concentration of hyaluronic acid [HA] is 20 mg / g of total weight of said composition. In one embodiment, the sterilized aqueous composition according to the invention is characterized in that the total content of hyaluronic acid is between 0.2 and 5% by weight relative to the total weight of said composition. In one embodiment, the sterilized aqueous composition according to the invention is characterized in that the total content of hyaluronic acid is greater than or equal to 1% by weight relative to the total weight of said composition. In one embodiment, the sterilized aqueous composition according to the invention comprises at least one non-crosslinked hyaluronic acid or one of its salts, alone or in admixture. In one embodiment, the sterilized aqueous composition according to the invention comprises at least one crosslinked hyaluronic acid or one of its salts, alone or in admixture. In one embodiment, the sterilized aqueous composition according to the invention comprises at least one co-crosslinked hyaluronic acid or one of its salts, alone or in admixture. In one embodiment, the sterilized aqueous composition according to the invention comprises at least one cross-linked or non-cross-linked, chemically modified hyaluronic acid, or one of its salts, alone or in admixture. In one embodiment, the hyaluronic acid is doubly crosslinked as described in the patent application WO02 / 046253 in the name of Fermentech Medical Limited. In one embodiment, the sterilized aqueous composition according to the invention comprises a mixture of hyaluronic acids, or one of their salts, crosslinked and uncrosslinked. In one embodiment, the sterilized aqueous composition according to the invention comprises a mixture of hyaluronic acids, or one of their salts, crosslinked. In one embodiment, the mixture of hyaluronic acids, or one of their salts, crosslinked is a monophasic mixture such as that described in the patent application WO2009 / 071697 in the name of the applicant. In one embodiment, the mixture of hyaluronic acids, or one of their crosslinked salts, is a mixture obtained by mixing several hyaluronic acids, or one of their salts, with different molecular weights beforehand. their crosslinking, as described in the patent application WO2004 / 092222 in the name of Corneal Industry. In one embodiment, the sterilized aqueous composition according to the invention comprises at least one hyaluronic acid, or one of its salts, substituted with a group providing lipophilic or moisturizing properties, such as, for example, substituted hyaluronic acids. as described in the patent application FR 2 983 483 in the name of the applicant. In one embodiment, the hyaluronic acid is in the form of sodium or potassium salt. Mw or "molecular weight" is the weight average molecular weight of the polymers, measured in Daltons. In one embodiment, the composition according to the invention is characterized in that the molecular weight Mw of the at least one hyaluronic acid is in a range of 0.01 MDa and 5 MDa. In one embodiment, the composition according to the invention is characterized in that the molecular weight Mw of the at least one hyaluronic acid is in a range of 0.1 MDa and 3.5 MDa. In one embodiment, the composition according to the invention is characterized in that the molecular weight Mw of the at least one hyaluronic acid is in a range of 1 MDa and 3 MDa. In one embodiment, the composition according to the invention is characterized in that the molecular weight Mw of the at least one hyaluronic acid is 1 MDa. In one embodiment, the composition according to the invention is characterized in that the molecular weight Mw of the at least one hyaluronic acid is 3 MDa. In the present invention, the degree of crosslinking X is defined as being equal to the ratio: (number of moles of crosslinking agent introduced into the reaction medium) X = .............. .................................................. ......................................--- (Number of moles of dissacharidic pattern introduced into the reaction medium) In one embodiment, the crosslinked hyaluronic acid has a degree of crosslinking X of between 0.001 and 0.5. In one embodiment, the crosslinked hyaluronic acid has a degree of crosslinking X of between 0.01 and 0.4. In one embodiment, the crosslinked hyaluronic acid has a degree of crosslinking X of between 0.1 and 0.3. In one embodiment, the crosslinked hyaluronic acid has a degree of crosslinking X of 0.06. In one embodiment, the crosslinked hyaluronic acid has an X crosslinking level of 0.07. In one embodiment, the crosslinked hyaluronic acid has a degree of crosslinking X of 0.12. In one embodiment, the sterilized aqueous composition according to the invention comprises, in addition, another polysaccharide. In one embodiment, this other polysaccharide is chosen from the group consisting of cellulose and its derivatives and / or alginic acid or one of their salts. The aqueous composition is sterilized, that is to say it undergoes after its preparation a sterilization step, said sterilization step being carried out by heat, wet heat, gamma radiation (y), or by accelerated electron beam (Electron-beam). In one embodiment, the sterilization step is performed by steam autoclaving. In one embodiment, the sterilization by steam autoclaving is carried out at a temperature of 121 to 134 ° C, for a period of time adapted to the temperature. In one embodiment, sterilization by steam autoclaving is carried out at a temperature of 131 ° C for 1 min. In one embodiment, sterilization by steam autoclaving is carried out at a temperature of 130 ° C for 3 min. In one embodiment, sterilization by steam autoclaving is carried out at a temperature of 125 ° C for 7 min. In one embodiment, sterilization by steam autoclaving is carried out at a temperature of 121 ° C for 20 min. In one embodiment, sterilization by steam autoclaving is carried out at a temperature of 121 ° C for 10 min. In one embodiment, sterilization by steam autoclaving is carried out at a temperature of 100 ° C for 2 hours. In one embodiment, the sterilization step is carried out with ethylene oxide. In one embodiment, the sterilization step is performed by irradiation with gamma radiation (y). In one embodiment, the sterilized aqueous composition according to the invention further comprises at least one antioxidant. The invention therefore also relates to a sterilized aqueous composition, comprising at least one hyaluronic acid, at least meplvacaine and at least one antioxidant, the mass ratio between the concentration of hyaluronic acid [HA] and the concentration of mepivacaine [ MEPI]: [HA] / [MEPI] being greater than 0.1; 0.1 In one embodiment, the sterilized aqueous composition according to the invention is characterized in that the at least one antioxidant is chosen from polyols. In one embodiment, the sterilized aqueous composition according to the invention is characterized in that the polyols are chosen from the group consisting of glycerol, sorbitol, propylene glycol, xyltol, mannitol and erythrolol. , maltitol and lactitol, alone or as a mixture. In one embodiment, the sterilized aqueous composition according to the invention is characterized in that the polyols are chosen from the group consisting of mannitol and sorbitol, alone or as a mixture. [000120] In one embodiment, the sterilized aqueous composition according to the invention is characterized in that the polyol is mannitol. In one embodiment, the sterilized aqueous composition according to the invention is characterized in that the polyol is sorbitol. [000122] In one embodiment, the sterilized aqueous composition according to the invention is characterized in that the antioxidant is a mixture of mannitol and sorbitol. In one embodiment, the sterilized aqueous composition according to the invention is characterized in that the polyol content is between 20 and 40 mg / g total weight of said composition. In one embodiment, the sterilized aqueous composition according to the invention is characterized in that the polyol content is between 25 and 35 mg / g total weight of said composition. In one embodiment, the sterilized aqueous composition according to the invention is characterized in that the polyol content is 35 mg / g total weight of said composition. In one embodiment, the sterilized aqueous composition according to the invention is characterized in that the polyol is mannitol and its content is between 20 and 40 mg / g total weight of said composition. In one embodiment, the sterilized aqueous composition according to the invention is characterized in that the polyol is mannitol and its content is between 25 and 35 mg / g total weight of said composition. In one embodiment, the sterilized aqueous composition according to the invention is characterized in that the polyol is mannitol and its content is 35 mg / g total weight of said composition. In one embodiment, the sterilized aqueous composition according to the invention is characterized in that said composition further comprises at least one additional compound. In one embodiment, the sterilized aqueous composition according to the invention is characterized in that the additional compound content is between 0.1 and 100 mg / g of total weight of said composition. In one embodiment, the sterilized aqueous composition according to the invention is characterized in that the additional compound content is between 1 and 50 mg / g of total weight of said composition. In one embodiment, the sterilized aqueous composition according to the invention is characterized in that the additional compound is dimethyl sulfone, hereinafter DMS. In one embodiment, the sterilized aqueous composition according to the invention is characterized in that the additional compound is a water-soluble salt of sucrose octasulfate, hereinafter SOS. In one embodiment, the sterilized aqueous composition according to the invention is characterized in that the additional compound is a vitamin C derivative. In one embodiment, the vitamin C derivative is a magnesium ascorbyl phosphate salt, hereinafter MAP. In one embodiment, the sterilized aqueous composition according to the invention is characterized in that the additional compound belongs to the family of catecholamines. In one embodiment, the sterilized aqueous composition according to the invention is characterized in that the additional compound belonging to the family of catecholamines, is epinephrine. In one embodiment, the sterilized aqueous composition according to the invention is characterized in that the additional compound content is between 0.01 and 10% by weight relative to the total weight of said composition. In one embodiment, the sterilized aqueous composition according to the invention is characterized in that the additional compound content is between 0.1 and 5% by weight relative to the total weight of said composition. In one embodiment, the total content of additional compounds is between 0.01 mg / g and 40 mg / g of total weight of said composition. In one embodiment, the total content of additional compounds is between 0.1 mg / g and 10 mg / g of total weight of said composition. In one embodiment, the total content of additional compounds is between 0.1 mg / g and 1 mg / g of total weight of said composition. In one embodiment, the additional compound is dimethyl sulfone and its content is between 1 and 10 mg / g total weight of said composition. In one embodiment, the additional compound is a water-soluble salt of sucrose octasulfate and its content is between 1 and 10 mg / g total weight of said composition. In one embodiment, the additional compound is a magnesium ascorbyl phosphate salt and its content is between 0.3 and 10 mg / g total weight of said composition. The invention also relates to a method for manufacturing a sterilized aqueous composition according to the invention. In one embodiment, the method according to the invention is characterized in that it comprises at least: a hydration step in a pH buffer solution close to the physiological pH of the fibers of at least one hyaluronic acid; or one of its salts, alone or in admixture, to obtain a hydrogel, - a step of incorporating mepivacaine in aqueous solution with the hydrogel obtained in the preceding step, - a homogenization step, and - A sterilization step. [000148] In one embodiment, the buffer solution is an aqueous solution of phosphate buffer. In one embodiment, the pH of the mepivacaine solution is adjusted to a value between 6.5 and 7 before its introduction into the gel and / or hydogel. In one embodiment, the mepivacaine solution is incorporated into the gel according to the method described in French patent application 13/52971 in the name of the applicant. In one embodiment, the pH of the gel and / or hydrogel is adjusted to a value between 7.7 and 8 before the introduction of the mepivacaine solution whose pH is not adjusted. In one embodiment, the mepivacaine solution is incorporated in the gel according to the method described in the patent application WO 2010/015901 in the name of Allergan. In one embodiment, the method according to the invention is characterized in that the hydration step is carried out at room temperature. In one embodiment, the method according to the invention is characterized in that the homogenization step is carried out at ambient temperature. In one embodiment, the method according to the invention is characterized in that it further comprises at least one step of conditioning the homogenized mixture in syringes. In one embodiment, the method according to the invention is characterized in that it further comprises at least one step of conditioning the homogenized mixture in single-dose vials. In one embodiment, the method is characterized in that it comprises at least one sterilization step. In one embodiment, said sterilization step is performed after the conditioning step. In one embodiment, said sterilization step is performed by heat, wet heat, gamma radiation (y), or accelerated electron beam (Electron-beam). In one embodiment, the sterilization step is performed after conditioning by steam autoclaving. In one embodiment, the sterilization step is carried out after conditioning by irradiation with gamma radiation (y) or by accelerated electron beam (Electron-beam). In one embodiment, the method according to The invention is characterized in that sterilization by steam autoclaving is carried out after conditioning at a temperature of 121 to 134 ° C, for a period of time adapted to the temperature. In one embodiment, the method according to the invention is characterized in that it further comprises at least one crosslinking step. In one embodiment, the method according to the invention is characterized in that the crosslinking step is between the hydration step and the step of incorporating mepivacaine. In one embodiment, the process according to the invention is characterized in that the crosslinking step is carried out using at least one crosslinking agent. In one embodiment, the method according to the invention is characterized in that the crosslinking agent is bi- or polyfunctional. In one embodiment, the process according to the invention is characterized in that the bi- or polyfunctional crosslinking agent is chosen from the group consisting of ethyleneglycoldiglycidyl ether and butanedioldiglycidyl ether (BDDE). ), polyglycerol polyglycidyl ether, polyethyleneglycoldiglycidyl ether, polypropyleneglycoldiglycidyl ether, a bis- or polyepoxy such as 1,2,3,4-diepoxybutane or 1,2,7,8-diepoxyoctane, a dialkylsulfone, divinylsulfone, formaldehyde, epichlorohydrin or even glutaraldehyde, carbodiimides such as, for example, 1-ethyl-3- [3-dimethylaminopropyl] carbodiimide hydrochloride (EDC). In one embodiment, the process according to the invention is characterized in that the bifunctional crosslinking agent is butanedioldiglycidyl ether (BDDE) or 1,2,7,8-diepoxyoctane. In one embodiment, the manufacturing method according to the invention is characterized in that the crosslinking step is carried out according to the techniques known to those skilled in the art. In one embodiment, the method according to the invention is characterized in that it comprises, after the crosslinking step, at least one purification and washing step carried out according to the techniques known to man of the job. In one embodiment, the method according to the invention is characterized in that it further comprises at least one step of incorporating at least one antioxidant. In one embodiment, the at least one antioxidant is chosen from polyols. In one embodiment, the polyols are selected from the group consisting of glycerol, sorbitol, propylene glycol, xylitol, mannitol, erythritol, maltitol and lactltol, alone or in admixture. In one embodiment, the method according to the invention is characterized in that it further comprises at least one step of mixing a solution of at least one additional compound with the hydrogel obtained at the same time. hydration stage. In one embodiment, the process according to the invention is characterized in that the step of mixing a solution of at least one additional compound with the hydrogel obtained in the hydration stage is before the homogenization step. In one embodiment, the process according to the invention is characterized in that the step of mixing a solution of at least one additional compound with the hydrogel obtained in the hydration step is carried out at a temperature suitable for the manufacturing process. In one embodiment, it is carried out at room temperature. The invention also relates to a process for obtaining a sterilized aqueous hyaluronic acid composition comprising a local anesthetic, said composition having rheological properties after heat sterilization superior to the rheological properties of a composition comprising lidocaine, characterized in that lidocaine is substituted with an equivalent amount, at the same pH, of mepivacaine. [000177] Equivalent amount is an equivalent amount by weight, in moles or bioavailability equivalent to a pH close to the physiological pH. In said process, the composition obtained is defined as the composition according to the invention. The invention also relates to the use of mepivacaine in substitution of lidocaine in equivalent amount to obtain a hyaluronic acid composition comprising a local anesthetic whose rheological properties after heat sterilization are superior to the rheological properties of the same hyaluronic acid composition comprising lidocaine. In said use, the composition obtained is defined as the composition according to the invention. [000181] Equivalent amount means either an equivalent amount by weight, in moles or equivalent bioavailability. By hyaluronic acid is meant hyaluronic acid, crosslinked or uncrosslinked, alone or as a mixture, optionally chemically modified by substitution, alone or as a mixture, optionally in the form of one of its salts, alone or in admixture. . [000183] By local anesthetic is meant a local anesthetic or one of its salts, alone or as a mixture. Mepivacaine means mepivacaine or one of its salts, alone or in mixture. Lidocaine means lidocaine or one of its salts, alone or in mixture. The term "rheological properties" means the elastic modulus (G ') and / or the viscosity (η). The term "superior rheological properties" means that the values of the elastic modulus and / or the viscosity are higher. By "replacement" is meant the formulation of gels in which is incorporated mepivacaine instead of lidocaine. The invention also relates to the use of a sterilized aqueous composition for the formulation of a composition for filling wrinkles, correction of skin defects or volumizing (cheekbones, chin, lips). [000191] The invention also relates to the use of a sterilized aqueous composition for the formulation of an injectable composition in a joint in replacement or in addition to deficient synovial fluid. The invention also relates to the use of a sterilized aqueous composition according to the invention for the formulation of a composition for filling wrinkles. The invention also relates to the use of a sterilized aqueous composition according to the invention for the formulation of a viscosupplementation composition. [000194] The targeted applications are more particularly the commonly used applications in the context of injectable viscoelastics and polysaccharides used or potentially usable in the following pathologies or treatments: - Aesthetic injections in the face: wrinkle filling, skin defects or volumatrices (cheekbones, chin, lips); - Volumizing injections at the level of the body: increase of the breasts and buttocks, increase of the point G, vaginoplasty, reconstruction of the vaginal lips, increase of the size of the penis; - Treatment of osteoarthritis, injection into the joint as a replacement for or in addition to the deficient synovial fluid; - Peri-urethral injection for the treatment of urinary incontinence by sphincter insufficiency; - Post-surgical injection to avoid peritoneal adhesions in particular; - Injection following surgery of presbyopia by seral laser incisions; - Injection into the vitreous cavity; - Injection during cataract surgery; - Injection into the genitals. [000195] More particularly, in cosmetic surgery, depending on its viscoelastic properties and remanence, the sterilized aqueous composition obtained according to the method of the invention may be used: - for the filling of fine, medium or deep wrinkles, and be injected with fine diameter needles (27 Gauge for example); - as volumizer with an injection by larger diameter needles, for example, 22 to 26 Gauge, and longer (30 to 40 mm for example); in this case, its cohesive nature will ensure its maintenance at the injection site. [000196] The sterilized aqueous composition according to the invention also has an important application in joint surgery and dental surgery for filling periodontal pockets, for example. These examples of use are in no way limiting, the sterilized aqueous composition according to the present invention being more widely intended to: fill volumes; - generate spaces within certain tissues, thus favoring their optimal functioning; - replace deficient physiological fluids. [000198] The invention also relates to a kit comprising a sterilized aqueous composition according to the invention, packaged in syringes and sterilized after conditioning. [000199] The invention also relates to a kit comprising a sterilized aqueous composition according to the invention, packaged in single-dose vials and sterilized after conditioning. EXAMPLES a) Manufacture of gels - Non-crosslinked hyaluronic acid gels Injectable quality sodium hyaluronate (NaHA) fibers are weighed in a container. An aqueous solution of phosphate buffer is added, the whole is homogenized for about 1 hour with a spatula, at room temperature and at an atmospheric pressure of 900 mmHg. Crosslinked Hyaluronic Acid Gels The gels comprising crosslinked hyaluronic acid are obtained according to the procedure described in patent application WO 2009/071697 in the name of the Applicant from sodium hyaluronate fibers (NaHA). ) and butanedioldiglycidyl ether (BDDE). Local anesthetics The local anesthetics are solubilized in a phosphate buffer solution stabilized at a pH close to the physiological pH before they are incorporated into the crosslinked or uncrosslinked hyaluronic acid gels. Antioxidants and Additional Compounds The antioxidants or the additional compounds are solubilized in a phosphate buffer solution prior to their incorporation into the crosslinked or uncrosslinked hyalutronic acid gels. Sterilization [000204] The compositions thus obtained are packaged in syringes which are sterilized by autoclaving with steam (T = 121 ° C., 10 min). b) Measurements of the rheological properties [000205] The elastic components G ', compositions comprising crosslinked or uncrosslinked hyaluronic acid before and after sterilization by steam autoclaving were measured on TA Instrument AR 2000 Ex rheometer, in oscillation with 25 ° C, the values of the elastic component G 'being recorded at a frequency of 1 Hz. [000206] The viscosity η of the compositions is measured on TA Instruments AR 2000 Ex rheometer, under stress imposed at 25 ° C. The viscosity value is measured at a stress of 0.02 s'1. Example 1 [000207] Example 1 illustrates the influence of different local anesthetics on the alteration during thermal sterilization of the rheological properties of hyaluronic acid gels of different molecular weights, at different concentrations that are not crosslinked or crosslinked and at different levels of crosslinking. Example 1-a: [000208] Example 1-a illustrates the influence of different local anesthetics on the alteration during heat sterilization of the rheological properties of a hyaluronic acid gel of average molecular weight of 3.106 Da at a concentration of 20 mg / g with a degree of crosslinking X = 0.12. The ratio [HA] / [MEPI] or [HA] / [AL] varies from 6.67 to 2. For all measurements, a reference composition is formulated, replacing the aqueous local anesthetic solution with an equivalent amount of aqueous phosphate buffer solution (the additional compounds being preserved). [000211] Table 1 below lists the various compositions tested and the results obtained. The abbreviations used are: AL: Local anesthetic; Aox: antioxidant; CA: Additional compound; LIDO: lidocaine; MEPI: mepivacaine; PRILO: prilocaine; HA: hyaluronic acid; % G ':% improvement of the elastic component G' with respect to the reference composition. [000212] The percentage of improvement of the elastic component G 'is defined as: % improvement G '= 100 * (Y-Y') / Y with Y = Percent loss of sterilization of the elastic component G 'of the reference composition and Y' = Percent loss of sterilization of the component elastic G 'of the tested composition. Table 1 [000213] At equivalent concentration, the rheological properties during heat sterilization of compositions comprising hyaluronic acid with a weight average molecular weight of 3 × 10 6 Da at a concentration of 20 mg / g with a degree of crosslinking X = 0.12 are less altered in the presence of mepivacaine than lidocaine or prilocaine regardless of the ratio. Example 1-b: [000214] Example 1-b illustrates the influence of various local anesthetics on the alteration during heat sterilization of the rheological properties of a hyaluronic acid gel of average molecular weight of 1.106 Da at a concentration of 20 mg / g with a degree of crosslinking of X = 0.07. [000215] The ratio [HA] / [MEPI] or [HA] / [AL] varies from 6.67 to 3.33. For all measurements, a reference composition is formulated, replacing the aqueous solution of local anesthetic with an equivalent amount of aqueous phosphate buffer solution (the additional compounds being preserved). [000217] Table 2 below lists the various compositions tested and the results obtained. The abbreviations used are: AL: Local anesthetic; Aox: antioxidant; CA: Additional compound; LIDO: lidocaine; MEPI: mepivacaine; PRILO: prilocaine; HA: hyaluronic acid; % G ':% improvement of the elastic component G' with respect to the reference composition. [000218] The percentage of improvement of the elastic component G 'is defined as: % improvement G '= 100 * (Y-Y') / Y with Y = Percent loss of sterilization of the elastic component G 'of the reference composition and Y' = Percent loss of sterilization of the component elastic G 'of the tested composition. Table 2 [000219] As in Example 1-a, but in the presence of hyaluronic acid of lower molecular weight by weight and a lower degree of crosslinking, the results obtained are confirmed regardless of the ratio. Since the best results have been obtained in the presence of lidocaine or mepivacaine, the study will be continued by comparing the results obtained only in the presence of mepivacaine or lidocaine. Example 1-c: [000221] Example 1-c illustrates the influence of different anesthetics on the alteration during heat sterilization of the rheological properties of a hyaluronic acid gel of average molecular weight by weight of 3.106 Da at a concentration of 20 mg / g with a degree of crosslinking X = 0.06. The [HA] / [MEPI] or [HA] / [AL] ratio is 6.67. For all measurements, a reference composition is formulated, replacing the aqueous solution of local anesthetic with an equivalent amount of aqueous phosphate buffer solution (the additional compounds being preserved). [000224] Table 3 below lists the various compositions tested and the results obtained. The abbreviations used are: AL: Local anesthetic; Aox: antioxidant; CA: Additional compound; LIDO: lidocaine; MEPI: mepivacaine; HA: hyaluronic acid%; G ':% improvement of the elastic component G' with respect to the reference composition. [000225] The percentage of improvement of the elastic component G 'is defined as: % improvement G '= 100 * (Y-Y') / Y with Y = Percent loss of sterilization of the elastic component G 'of the reference composition and Y' = Percent loss of sterilization of the component elastic G 'of the tested composition. Table 3 The results obtained in Example 1-a are confirmed with hyaluronic acid of the same weight average molecular weight, at the same concentration but with a lower degree of crosslinking. The results obtained in Example 1-b are also confirmed with hyaluronic acid of higher average molecular weight, at the same concentration and at a comparable degree of crosslinking. Example 1-d: [000227] Example 1-d illustrates the influence of various local anesthetics on the alteration during heat sterilization of the rheological properties of a hyaluronic acid gel of average molecular weight 3.106 Da at a concentration of 20 mg / g, uncrosslinked. [000228] The [HA] / [MEPI] or [HA] / [AL] ratio varies from 20 to 2. For all measurements, a reference composition is formulated, replacing the aqueous solution of local anesthetic with an equivalent amount of aqueous phosphate buffer solution (the additional compounds being preserved). [000230] Table 4 below lists the various compositions tested and the results obtained. The abbreviations used are: AL: Local anesthetic; Aox: antioxidant; CA: Additional compound; LIDO: lidocaine; MEPI: meplvacaine; HA: hyaluronic acid; % η:% improvement of the viscosity η relative to the reference composition. [000231] The percentage of improvement in the viscosity η is defined as being; % improvement η = 100 * (Z-Z ') / Z with Z = Percentage sterilization loss of the viscosity η of the reference composition and Z' = Percentage loss at sterilization of the viscosity η of the composition tested. Table 4 [000232] The results obtained in Examples 1-a and 1-c are confirmed with hyaluronic acid of the same weight average molecular weight at the same concentration but not crosslinked whatever the ratio. [000233] The rheological properties during heat sterilization of compositions comprising hyaluronic acid at a concentration of 20 mg / g are less impaired in the presence of mepivacaine than lidocaine or prilocaine, at equivalent concentrations, and what whatever the ratio, the weight average molecular weight and the degree of crosslinking. Example 2 [000234] Example 2 illustrates the influence of various local anesthetics in the presence of an antioxidant on the alteration during heat sterilization of the rheological properties of hyaluronic acid gels of different molecular weights, different concentrations uncrosslinked or crosslinked and at different levels of crosslinking. Example 2-a: [000235] Example 2-a illustrates the influence of different local anesthetics in the presence of mannitol on the alteration during heat sterilization of the rheological properties of a mass hyaluronic acid gel Molecular weight average of 3.106 Da with a degree of crosslinking X = 0.12 at a concentration of 20 mg / g. [000236] The ratio [HA] / [MEPI] or [HA] / [AL] varies from 20 to 2. For all measurements, a reference composition is formulated, replacing the aqueous solution of local anesthetic with an equivalent amount of aqueous phosphate buffer solution (the additional compounds being preserved). [000238] Table 5 below lists the various compositions tested and the results obtained. The abbreviations used are: AL: Local anesthetic; Aox: antioxidant; MAN: mannitol; CA: Additional compound; LIDO: lidocaine; MEPI: mepivacaine; PRILO: prilocaine; HA: hyaluronic acid% G ':% improvement of the elastic component G' with respect to the reference composition. [000239] The percentage of improvement of the elastic component G 'is defined as: % improvement G '= 100 * (Y-Y') / Y with Y = Percent loss of sterilization of the elastic component G 'of the reference composition and Y' = Percent loss of sterilization of the component elastic G 'of the tested composition. Table 5 [000240] At equivalent concentrations in the presence of mannitol, the rheological properties during heat sterilization of compositions comprising acid hyaluronic acid with a weight average molecular weight of 3.106 Da at a concentration of 20 mg / g and with a degree of crosslinking X = 0.12 are less altered in the presence of mepivacaine than lidocaine or prilocaine whatever the ratio. Example 2-b: [000241] Example 2-b illustrates the influence of various local anesthetics in the presence of an antioxidant on the alteration during heat sterilization of the rheological properties of a hyaluronic acid gel weight average molecular weight of 1.106 Da at a concentration of 20 mg / g, with a degree of crosslinking of X = 0.07. The ratio [HA] / [MEPI] or [HA] / [AL] varies from 6.67 to 3.33. For all measurements, a reference composition is formulated, replacing the aqueous solution of local anesthetic with an equivalent amount of aqueous phosphate buffer solution (the additional compounds being preserved). Table 6 below lists the various compositions tested and the results obtained. The abbreviations used are: AL: Local anesthetic; Aox: antioxidant; MAN: mannitol; CA: Additional compound; LIDO: lidocaine; MEPI: mepivacaine; PRILO: prilocaine; HA: hyaluronic acid; % G ':% improvement of the elastic component G' with respect to the reference composition. The percentage of improvement of the elastic component G 'is defined as: % improvement G '= 100 * (Y-Y') / Y with Y = Percent loss of sterilization of the elastic component G 'of the reference composition and Y' = Percent loss of sterilization of the component elastic G 'of the tested composition. Table 6 [000246] As in Example 2-a, but in the presence of hyaluronic acid of lower molecular weight by weight and a lower degree of crosslinking, the results obtained are confirmed regardless of the ratio. The best results having been obtained in the presence of lidocaine or mepivacaine, the remainder of the study was made only by comparing the results obtained in the presence of mepivacaine or lidocaine. Example 2-c: [000248] Example 2-c illustrates the influence of various local anesthetics in the presence of an antioxidant on the alteration during heat sterilization of the rheological properties of a hyaluronic acid gel weight average molecular weight of 3.106 Da at a concentration of 20 mg / g with a degree of crosslinking X = 0.06. The [HA] / [MEPI] or [HA] / [AL] ratio is 3.33. For all measurements, a reference composition is formulated, replacing the aqueous solution of local anesthetic with an equivalent amount of aqueous phosphate buffer solution (the additional compounds being preserved). [000251] Table 7 below lists the different compositions tested and the results obtained. The abbreviations used are: AL: Local anesthetic; Aox: antioxidant; MAN: mannitol; CA: Additional compound; LIDO: lidocaine; MEPI: mepivacaine; HA: hyaluronic acid; % G ':% improvement of the elastic component G' with respect to the reference composition. [000252] The percentage of improvement of the elastic component G 'is defined as: % improvement G '= 100 * (Y-Y') / Y with Y = Percent loss of sterilization of the elastic component G 'of the reference composition and Y' = Percent loss of sterilization of the component elastic G 'of the tested composition. Table 7 [000253] The results obtained in Example 2-a are confirmed with hyaluronic acid of the same weight average molecular weight, at the same concentration but with a lower degree of crosslinking. The results obtained in Example 2-b are also confirmed with hyaluronic acid of higher average molecular weight, at the same concentration with a similar degree of crosslinking. Example 2-d: [000254] Example 2-d illustrates the influence of different local anesthetics in the presence of mannitol on the alteration during heat sterilization of the rheological properties of a mass hyaluronic acid gel Molecular weight average of 3.106 Da at a concentration of 20 mg / g, uncrosslinked. The ratio [HA] / [MEPI] or [HA] / [AL] varies from 20 to 2. For all measurements, a reference composition is formulated, replacing the aqueous solution of local anesthetic with an equivalent amount of aqueous phosphate buffer solution. [000257] Table 8 below lists the various compositions tested and the results obtained. The abbreviations used are: AL: Local anesthetic; Aox: antioxidant; MAN: mannitol; CA: Additional compound; MEPI: mepivacaine, HA, hyaluronic acid; % η:% improvement of the viscosity η relative to the reference composition. [000258] The percentage of improvement in the viscosity η is defined as being; % improvement η = 100 * (Z-Z ') / Z with Y = Percentage sterilization loss of the viscosity η of the reference composition and Y' - Percentage loss at sterilization of the viscosity η of the composition tested. Table 8 [000259] The results obtained in Examples 2-a and 2-c are confirmed with hyaluronic acid of the same weight average molecular weight, at the same concentration but not crosslinked whatever the ratio. At equivalent concentration, the rheological properties during the heat sterilization of compositions comprising hyaluronic acid at a concentration of 20 mg / g comprising mannitol are less impaired in the presence of mepivacaine than lidocaine or prilocaine and whatever the ratio, the weight average molecular weight and the degree of crosslinking. Example 3 [000261] Example 3 Illustrates the influence of various local anesthetics in the presence of a salt of magnesium ascorbyl phosphate, hereinafter MAP on the alteration during heat sterilization of the rheological properties of hyaluronic acid gels at different levels of crosslinking. Example 3-a [000262] Example 3-a illustrates the influence of various local anesthetics in the presence of MAP on the alteration during heat sterilization of the rheological properties of a hyaluronic acid gel of molecular weight weight average of 3.106 Da with a degree of crosslinking X = 0.12 at a concentration of 20 mg / g. The [HA] / [MEPI] or [HA] / [AL] ratio is 6.67. For all measurements, a reference composition is formulated, replacing the aqueous solution of local anesthetic with an equivalent amount of aqueous phosphate buffer solution (the additional compounds being preserved). [000265] Table 9 below lists the various compositions tested and the results obtained. The abbreviations used are: AL: Local anesthetic; Aox: antioxidant; CA: Additional compound; MAP: magnesium ascorbyl phosphate; LIDO: lidocaine; MEPI: mepivacaine; HA: hyaluronic acid; % G ':% improvement of the elastic component G' with respect to the reference composition. The percentage of improvement of the elastic component G 'is defined as: % improvement G '= 100 * (Y-Y') / Y with Y = Percent loss of sterilization of the elastic component G 'of the reference composition and Y' = Percent loss of sterilization of the component elastic G 'of the tested composition. Table 9 In the presence of MAP, the rheological properties during the heat sterilization of compositions comprising hyaluronic acid with a weight average molecular weight of 3 × 10 6 Da with a degree of crosslinking X = 0.06 and at a concentration of 20%. mg / g are less impaired in the presence of meplvacaine than lidocaine, at equivalent concentrations, at a ratio [HA] / [MEPI] of 6.67. Example 3-b [000268] Example 3-b illustrates the Influence of various local anesthetics in the presence of MAP on the alteration during heat sterilization of the rheological properties of a hyaluronic acid gel of molecular weight weight average of 3.105 Da with a degree of crosslinking X = 0.06 at a concentration of 20 mg / g. The [HA] / [MEPI] or [HA] / [AL] ratio is 6.67. For all measurements, a reference composition is formulated, replacing the aqueous solution of local anesthetic with an equivalent amount of aqueous phosphate buffer solution (the additional compounds being preserved). Table 10 below lists the various compositions tested and the results obtained. The abbreviations used are: AL: Local anesthetic; Aox: antioxidant; CA: Additional compound; MAP: magnesium ascorbyl phosphate; LIDO: lidocaine; MEPI: mepivacaine; HA: hyaluronic acid; % G ':% improvement of the elastic component G' with respect to the reference composition. [000272] The percentage of improvement of the elastic component G 'is defined as: % improvement G '= 100 * (Y-Y') / Y with Y = Percent loss of sterilization of the elastic component G 'of the reference composition and Y' = Percent loss of sterilization of the component elastic G 'of the tested composition. Table 10 The results obtained in Example 3-a are confirmed with hyaluronic acid of the same weight average molecular weight, at the same concentration and at the same ratio [HA] / [MEPI], but at a rate of lower crosslinking. [000274] The rheological properties during heat sterilization of compositions comprising hyaluronic acid at a concentration of 20 mg / g in the presence of MAP are less impaired in the presence of mepivacaine than lidocaine at equivalent concentration, and this regardless of the degree of crosslinking. EXAMPLE 4 [000275] Example 4 illustrates the influence of various local anesthetics in the presence of mannitol and SOS on the alteration during heat sterilization of the rheological properties of hyaluronic acid gels of average molecular mass. weight of 3.106 Da with a degree of crosslinking X = 0.12 at a concentration of 20 mg / g. The [HA] / [MEPI] or [HA] / [AL] ratio is 6.67. For all measurements, a reference composition is formulated, replacing the aqueous solution of local anesthetic with an equivalent amount of aqueous phosphate buffer solution (the additional compounds being preserved). [000278] Table 11 below lists the various compositions tested and the results obtained. The abbreviations used are: AL: Local anesthetic; Aox: antioxidant; MAN: mannitol; CA: Additional compound; SOS: sucrose octasulfate; LIDO: lidocaine; MEPI: mepivacaine; HA: hyaluronic acid; % G ':% improvement of the elastic component G' with respect to the reference composition. [000279] The percentage of improvement of the elastic component G 'is defined as: % improvement G '= 100 * (Y-Y') / Y with Y = Percent loss of sterilization of the elastic component G 'of the reference composition, and Y' = Percent loss of sterilization of the elastic component G 'of the tested composition. Table 11 [000280] At equivalent concentrations, in the presence of mannitol and SOS, the rheological properties during the heat sterilization of compositions comprising hyaluronic acid at a concentration of 20 mg / g are less impaired in the presence of mepivacaine than lidocaine at a ratio of 6.67. Example 5 [000281] Example 5 illustrates the influence of various local anesthetics in the presence of mannitol and MAP on the alteration during heat sterilization of the rheological properties of hyaluronic acid gels of average molecular weight of 3.10 Da with a degree of crosslinking X = 0.12 at a concentration of 20 mg / g. Example 5-a [000282] Example 5-a illustrates the influence of different local anesthetics in the presence of mannitol and MAP at a concentration of 0.3 mg / g, on the alteration during heat sterilization rheological properties of hyaluronic acid gels with a weight average molecular weight of 3.10 Da with a degree of crosslinking X = 0.12 at a concentration of 20 mg / g. For all measurements, a reference composition is formulated, replacing the aqueous solution of local anesthetic with an equivalent amount of aqueous phosphate buffer solution (the additional compounds being preserved). [000284] Table 12 below lists the various compositions tested and the results obtained. The abbreviations used are: AL: Local anesthetic; Aox: antioxidant; MAN: mannitol; CA: Additional compound; MAP: magnesium ascorbyl phosphate; LIDO: lidocaine; MEPI: mepivacaine; HA: hyaluronic acid; % G ':% improvement of the elastic component G' with respect to the reference composition. [000285] The percentage of improvement of the elastic component G 'is defined as: % improvement G '= 100 * (Y-Y') / Y with Y = Percent loss of sterilization of the elastic component G 'of the reference composition, and Y' = Percent loss of sterilization of the elastic component G 'of the tested composition. Table 12 [000286] At equivalent concentrations, the rheological properties during heat sterilization of compositions comprising hyaluronic acid at a concentration of 20 mg / g in the presence of mannitol and MAP at a concentration of 0.3 mg / g are less impaired in the presence of mepivacaine than lidocaine at a ratio of 6.67. Example 5-b [000287] Example 5-b illustrates the influence of different local anesthetics in the presence of mannitol and MAP at a concentration of 0.7 mg / g, on the alteration during heat sterilization rheological properties of hyaluronic acid gels with a weight average molecular weight of 3.106 Da with a degree of crosslinking X = 0.12 at a concentration of 20 mg / g. For all measurements, a reference composition is formulated, replacing the aqueous solution of local anesthetic with an equivalent amount of aqueous phosphate buffer solution (the additional compounds being preserved). Table 13 below lists the different compositions tested and the results obtained. The abbreviations used are: AL: Local anesthetic; Aox: antioxidant; MAN: mannitol; CA: Additional compound; MAP: magnesium ascorbyl phosphate; LIDO: lidocaine; MEPI: mepivacaine; HA: hyaluronic acid; % G ':% improvement of the elastic component G' with respect to the reference composition. [000290] The percentage of improvement of the elastic component G 'is defined as: % improvement G '= 100 * (Y-Y') / Y with Y = Percent loss of sterilization of the elastic component G 'of the reference composition, and Y' = Percent loss of sterilization of the elastic component G 'of the tested composition. Table 13 [000291] The results obtained in Example 5-a are confirmed with a higher MAP concentration. Example 6 [000292] Example 6 makes it possible to compare the release kinetics of mepivacaine with the release kinetics of lidocaine, each introduced into a hyaluronic acid gel of weight average molecular weight of 3 × 10 6 Da with a degree of crosslinking. of X = 0.12 at a concentration of 20 mg / g. The initial concentrations of mepivacaine or lidocaine are 3 mg / g. [000293] The protocol for studying the kinetics of release of the two local anesthetics is the same as that implemented in Example 5 of the patent application WO 2010/015901 in the name of Allergan. The kinetics of release was however studied at 37 ° C in physiological saline medium. A follow-up by UV-Visible spectrophotometry is carried out to measure the local anesthetic present in the gel. In Table 13 below the mass percentages of lidocaine or mepivacaine within the hyaluronic acid gel measured after different dialysis times are specified. Table 13 [000295] The above results obtained are illustrated in FIG. 1 which is a graph showing the concentrations of lidocaine and mepivacaine as a function of the dialysis time. Figure 1, which represents the mass concentration of local anesthetic (lidocaine and / or mepivacaine) as a function of the dialysis time in hours, shows that the release kinetics of lidocaine and that of mepivacaine are comparable. [000296] Thus, the bioavailable amount of local anesthetic is equivalent whether lidocaine is incorporated or that mepivacaine is incorporated.
权利要求:
Claims (17) [1" id="c-fr-0001] 1. Sterilized aqueous composition, comprising at least one hyaluronic acid and at least mepivacaine, characterized in that the mass ratio between the concentration of hyaluronic acid [HA] and the concentration of mepivacaine [MEPI]: [HA] / [MEPI] ] is greater than or equal to 0.1; [HA] / [MEPI]> 0.1 and in that it further comprises at least one antioxidant chosen from polyols. [2" id="c-fr-0002] 2. Sterilized aqueous composition according to claim 1, characterized in that the mass ratio between the concentration of hyaluronic acid [HA] and the concentration of mepivacaine [MEPI]: [HA] / [MEPI] is between 0.1 and 50 ; 0.1 <[HA] / [MEPI] <50. [3" id="c-fr-0003] 3. Sterilized aqueous composition according to any one of the preceding claims, characterized in that the concentration of mepivacaine [MEPI] is between 0.01 mg / g and 50 mg / g. [4" id="c-fr-0004] 4. A sterilized aqueous composition according to any one of the preceding claims, characterized in that the mepivacaine is selected from the group comprising racemic mepivacaine hydrochloride, (R) -mepivacaine hydrochloride, (S) hydrochloride. mepivacaine, racemic mepivacaine, (R) -mepivacaine and (S) -mepivacaine or a pharmaceutically acceptable salt thereof. [5" id="c-fr-0005] 5. Sterilized aqueous composition according to any one of the preceding claims, characterized in that the concentration of hyaluronic acid [HA] is between 2 mg / g and 50 mg / g of total weight of said composition. [6" id="c-fr-0006] 6. sterilized aqueous composition according to any one of the preceding claims, characterized in that the concentration of hyaluronic acid [HA] is 20 mg / g of total weight of said composition. [7" id="c-fr-0007] 7. sterilized aqueous composition according to any one of the preceding claims, characterized in that it comprises at least one non-crosslinked hyaluronic acid or a salt thereof, alone or in admixture. [8" id="c-fr-0008] 8. Sterilized aqueous composition according to any one of claims 1 to 6, characterized in that it comprises at least one crosslinked hyaluronic acid or a salt thereof, alone or in a mixture, [9" id="c-fr-0009] 9. Sterilized aqueous composition according to any one of the preceding claims, characterized in that the polyols are chosen from the group consisting of glycerol, sorbitol, propylene glycol, xylitol, mannitol, erythritol, maltitol and lactitol, alone or as a mixture. [10" id="c-fr-0010] 10. Sterilized aqueous composition according to any one of the preceding claims, characterized in that it further comprises at least one additional compound. [11" id="c-fr-0011] 11. A method of manufacturing a sterilized aqueous composition according to any one of the preceding claims, comprising at least the following steps: a hydration step in a buffer solution at pH close to the physiological pH of the fibers of at least one hyaluronic acid or one of its salts, alone or in admixture, to obtain a hydrogel; a step of incorporating mepivacaine in aqueous solution with the hydrogel obtained in the preceding step; a homogenization step; and a sterilization step, characterized in that it also comprises at least one step of incorporating at least one antioxidant chosen from polyols. [12" id="c-fr-0012] 12. The manufacturing method according to claim 11, characterized in that it further comprises at least one crosslinking step. [13" id="c-fr-0013] 13. Process for obtaining a sterilized aqueous hyaluronic acid composition comprising at least one local anesthetic and further comprising at least one antioxidant chosen from polyols, said composition having rheological properties after heat sterilization superior to the rheological properties. of a composition comprising lidocaine, characterized in that the lidocaine is substituted with an equivalent amount, at the same pH, of mepivacaine. [14" id="c-fr-0014] 14. Use of mepivacaine instead of lidocaine in equivalent amount to obtain a hyaluronic acid composition comprising at least one local anesthetic and further comprising at least one antioxidant chosen from polyols whose rheological properties after heat sterilization are superior to the rheological properties of the same hyaluronic acid composition comprising lidocaine. [15" id="c-fr-0015] 15. Use of a sterilized aqueous composition according to any one of claims 1 to 10, for the formulation of a composition for filling wrinkles, correction of skin defects or volumizing. [16" id="c-fr-0016] 16. A sterilized aqueous composition according to any one of claims 1 to 10, for use in replacement or in addition to deficient synovial fluid. [17" id="c-fr-0017] 17. Kit comprising a sterilized aqueous composition according to any one of claims 1 to 10, packaged in syringes and sterilized after conditioning.
类似技术:
公开号 | 公开日 | 专利标题 FR3044228B1|2019-06-21|HYALURONIC ACID COMPOSITIONS COMPRISING MEPIVACAINE EP2890360B1|2021-09-29|Sterilised composition comprising at least one hyaluronic acid and magnesium ascorbyl phosphate CA2691600C|2017-01-10|Use of a natural polysaccharide gel for the preparation of an injectable formulation for the treatment of joint degeneration CA2708023C|2017-10-03|Biodegradable single-phase cohesive hydrogel AU2014298046B2|2018-11-08|Composition comprising hyaluronic acid and mepivacaine WO2016180904A1|2016-11-17|Compositions comprising at least one polyol and at least one anaesthetic WO2018220288A1|2018-12-06|Sterile injectable composition containing cross-linked hyaluronic acid and articaine CA3060431A1|2018-11-22|Method for preparing an aqueous hyaluronic acid gel EP3956386A1|2022-02-23|Process for crosslinking a polymer
同族专利:
公开号 | 公开日 EP3173086A1|2017-05-31| FR3015290A1|2015-06-26| FR3044228B1|2019-06-21| CA2932967A1|2015-07-02| JP6446462B2|2018-12-26| CN110623954A|2019-12-31| WO2015097261A1|2015-07-02| EA031349B1|2018-12-28| IL274454D0|2020-06-30| BR112016014247A2|2020-05-26| SG11201604862XA|2016-07-28| EA201691019A1|2016-10-31| MX362530B|2019-01-23| AU2014372513A1|2016-07-28| PL3173086T3|2020-11-16| IL246062A|2020-05-31| EP3049091A1|2016-08-03| US20160346433A1|2016-12-01| EP3049091B1|2017-01-04| EA202091755A1|2021-01-29| AU2014372513B2|2020-04-30| EP3173086B1|2020-01-08| PL3049091T3|2017-07-31| EA036502B1|2020-11-17| ES2796648T3|2020-11-27| KR20160096205A|2016-08-12| US20200000969A1|2020-01-02| MX2016007921A|2016-10-07| JP2017500358A|2017-01-05| FR3015290B1|2017-01-13| CN105916512B|2019-09-24| EP3799875A1|2021-04-07| SG10201805571PA|2018-08-30| ES2625841T3|2017-07-20| IL246062D0|2016-07-31| KR102343660B1|2021-12-28| PT3049091T|2017-04-07| EA201891754A1|2019-01-31| CN105916512A|2016-08-31|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 US20050136122A1|2003-12-22|2005-06-23|Anika Therapeutics, Inc.|Crosslinked hyaluronic acid compositions for tissue augmentation| US20100028437A1|2008-08-04|2010-02-04|Lebreton Pierre F|Hyaluronic Acid-Based Gels Including Lidocaine| FR2938187A1|2008-11-07|2010-05-14|Anteis Sa|INJECTABLE COMPOSITION BASED ON HYALURONIC ACID OR ONE OF ITS HEAT-STERILIZED SALTS, POLYOLS AND LIDOCAINE| EP2484387A1|2011-02-03|2012-08-08|Q-Med AB|Hyaluronic acid composition| FR2979539A1|2011-09-05|2013-03-08|Teoxane|Injectable and sterile dermatological composition, useful for e.g. preventing and/or treating cutaneous signs of chronological aging, comprises hyaluronic acid/its salt, where acid is associated with e.g. anesthetic and alpha-lipoic acid| WO2013186493A2|2012-06-13|2013-12-19|Laboratoires Vivacy|Composition, in an aqueous medium, including at least one hyaluronic acid and at least one sucrose octasulphate water-soluble salt| KR20140025117A|2012-08-21|2014-03-04|김종서|Composition of anesthetic comprising hyaluronic acid| CN102805882A|2012-08-28|2012-12-05|华熙福瑞达生物医药有限公司|Method for mixing soft tissue filling agent with anesthetic injecta before use| WO2014032804A1|2012-08-29|2014-03-06|Laboratoires Vivacy|Sterilised composition comprising at least one hyaluronic acid and magnesium ascorbyl phosphate| WO2015015407A1|2013-07-30|2015-02-05|Teoxane|Composition comprising hyaluronic acid and mepivacaine| FR1352971A|1963-01-09|1964-02-21|Siemens Ag|Assembly for measuring the distance of faults on lines| SE442820B|1984-06-08|1986-02-03|Pharmacia Ab|GEL OF THE CROSS-BOND HYALURONIC ACID FOR USE AS A GLASS BODY SUBSTITUTE| JPH0552808B2|1989-02-15|1993-08-06|Chisso Corp| GB9902412D0|1999-02-03|1999-03-24|Fermentech Med Ltd|Process| FR2861734B1|2003-04-10|2006-04-14|Corneal Ind|CROSSLINKING OF LOW AND HIGH MOLECULAR MASS POLYSACCHARIDES; PREPARATION OF INJECTABLE SINGLE PHASE HYDROGELS; POLYSACCHARIDES AND HYDROGELS OBTAINED| WO2005112888A2|2004-05-20|2005-12-01|Mentor Corporation|Methods for making injectable polymer hydrogels| FR2924615B1|2007-12-07|2010-01-22|Vivacy Lab|HYDROGEL COHESIVE BIODEGRADABLE.| EP2581079B1|2011-10-11|2016-12-07|BioPolymer GmbH & Co. KG|Combination of hyaluronic acid and prilocaine| FR2983483B1|2011-12-02|2014-11-14|Vivacy Lab|PROCESS FOR SIMULTANEOUS SUBSTITUTION AND RETICULATION OF A POLYSACCHARIDE VIA ITS HYDROXYL FUNCTIONS|WO2015006460A1|2013-07-10|2015-01-15|Matrix Biology Institute|Compositions of hyaluronan with high elasticity and uses thereof| US9421198B2|2013-07-30|2016-08-23|Teoxane|Composition comprising hyaluronic acid and mepivacaine| US10004824B2|2015-05-11|2018-06-26|Laboratoires Vivacy|Compositions comprising at least one polyol and at least one anesthetic| CN113577097A|2015-09-24|2021-11-02|基质生物研究所|Highly elastic hyaluronic acid compositions and methods of use thereof| FR3058064B1|2016-10-28|2020-08-07|Lab Vivacy|COMPOSITION BASED ON HYALURONIC ACID INCLUDING MEPIVACAINE| KR102091452B1|2017-12-19|2020-03-20|대화제약 주식회사|Method for preparing prefilled syringe comprising local anesthetics and hyaluronic acid hydrogel| CN114144200A|2019-05-17|2022-03-04|多伦多大学管理委员会|Sustained release local anesthetic hydrogel compositions| KR20210082077A|2019-12-24|2021-07-02|주식회사 엘지화학|Injectable composition comprising anesthetics, buffer solution and hyaluronic acid hydrogel, and method for preparing the same|
法律状态:
2016-12-05| PLFP| Fee payment|Year of fee payment: 4 | 2017-06-02| PLSC| Publication of the preliminary search report|Effective date: 20170602 | 2017-11-13| PLFP| Fee payment|Year of fee payment: 5 | 2018-10-17| PLFP| Fee payment|Year of fee payment: 6 | 2019-11-30| PLFP| Fee payment|Year of fee payment: 7 | 2020-12-26| PLFP| Fee payment|Year of fee payment: 8 | 2021-12-29| PLFP| Fee payment|Year of fee payment: 9 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 FR1363505|2013-12-23| FR1363505A|FR3015290B1|2013-12-23|2013-12-23|HYALURONIC ACID COMPOSITIONS COMPRISING MEPIVACAINE| FR1661827A|FR3044228B1|2013-12-23|2016-12-01|HYALURONIC ACID COMPOSITIONS COMPRISING MEPIVACAINE|FR1661827A| FR3044228B1|2013-12-23|2016-12-01|HYALURONIC ACID COMPOSITIONS COMPRISING MEPIVACAINE| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|